Hình thoi là gì? đặc thù của hình thoi? vết hiệu nhận ra của hình thoi? phương pháp tính chu vi hình thoi? phương pháp tính diện tích s của hình thoi? một vài bài tập vận dụng? một vài bài tập trường đoản cú luyện?
Hình thoi là một hình khá rất gần gũi trong công tác Toán học tập của chúng ta, nhưng nhiều người học sinh vẫn tuyệt nhầm lẫn thân hình thoi với hình bình hành. Vậy hình thoi là gì? vệt hiệu nhận ra hình thoi như thế nào? cách làm tính chu vi, diện tích s hình thoi?
1. Hình thoi là gì?
Hình thoi là hình tứ giác gồm bốn cạnh bằng nhau, là hình bình hành gồm hai cạnh tức thì kề bằng nhau hoặc có đường chéo cánh vuông góc cùng với nhau.
Ví dụ: Tứ giác ABCD là hình thoi AB=BC=CD=DA.




a) Ta có MB = MC, MA = ME buộc phải tứ giác ABEC là hình bình hành. (1)
Mặt khác cân có trung tuyến đường AM bên cạnh đó là mặt đường cao hay (2)
Từ (1) và (2) suy ra ABEC là hình thoi.
b) Ta tất cả CD // AB, CE // AB
CE cùng CD trùng nhau. Vậy C, D, E thẳng hàng.
ABEC là hình thoi (3)
ABCD là hình bình hành (4)
Từ (3), (4) suy ra CD = CE xuất xắc C là trung điểm của DE.
7. Một số bài tập từ bỏ luyện:
Bài 1: mang lại tam giác ABC, phân giác AD. Qua D kẻ con đường thẳng tuy nhiên song cùng với AC cắt AB tại E, qua D kẻ con đường thẳng tuy vậy song với AB giảm AC trên F. Minh chứng È là phân giác của góc AED.
Bài 2: cho tam giác ABC cân nặng tại A, trung con đường AM. Qua M kẻ mặt đường thẳng tuy nhiên song với AC giảm AB tại p và đường thẳng song song cùng với AB giảm AC tại Q.
a) Tứ giác APMQ là hình gì? vì chưng sao?
b) chứng minh PQ // BC.
Bài 3: đến hình bình hành ABCD. Trên các cạnh của AB với CD thứu tự lấy những điểm M với N làm thế nào để cho AM = DN. Đường trung trực của BM theo thứ tự cắt những đường trực tiếp MN với BC tại E với F.
a) chứng minh E với F đối xứng nhau qua AB.
b) minh chứng tứ giác MEBF là hình thoi.
c) Hình bình hành ABCD gồm thêm đk gì để tứ giác BCNE là hình thang cân.
Bài 4: đến hình bình hành ABCD, các đường chéo cánh cắt nhau trên O. Gọi E, F, G, H theo sản phẩm tự là giao điểm của những đường phân giác của các tam giác AOB, BOC, COD, DOA. Chứng minh EFGH là hình thoi.
Bài 5: mang đến hình bình hành ABCD có AB = 2BC. Hotline M, N theo lần lượt là trung điểm của AB cùng CD.
a) minh chứng tứ giác AMND là hình thoi.
b) call E là giao điểm của AN với DM; F là giao điểm của BN cùng MC. Tứ giác MENF là hình gì? vày sao?
Bài 6: cho hình bình hành ABCD, nhị đường chéo cắt nhau ở O. Hai tuyến đường thẳng d1 với d2 cùng đi qua O cùng vuông góc cùng với nhau. Đường thẳng d1 cắt các cạnh AB và CD sinh sống M và phường Đường trực tiếp d2 cắt những cạnh BC với AD ngơi nghỉ N với Q. Minh chứng tứ giác MNPQ là hình thoi.